Human p53 induces cell death and downregulates thioredoxin expression in Saccharomyces cerevisiae.

نویسندگان

  • Ines Yacoubi Hadj Amor
  • Kamel Smaoui
  • Ines Chaabène
  • Imed Mabrouk
  • Lamia Djemal
  • Henda Elleuch
  • Michèle Allouche
  • Raja Mokdad-Gargouri
  • Ali Gargouri
چکیده

The p53 tumour suppressor protein has a crucial role in controlling cell cycle and apoptosis in human cells and its inactivation by selective point mutations is associated with human cancers. Here we show that overexpression of the human wild-type (wt) p53 in Saccharomyces cerevisiae completely inhibits yeast growth under minimal media conditions. In contrast, the R248W 'hot spot' p53 mutant (one of the most frequent p53 mutations encountered in human cancers) does not impair yeast growth. Moreover, we report, for the first time, that the human wt p53 induces yeast cell death with characteristic markers of apoptosis: exposure of phosphatidylserine and DNA strand cleavage as shown by Annexin V staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay, respectively. In addition, p53 also has an impact on the expression of yeast genes. Using differential display and Northern blot analysis, we demonstrated that human wt p53 expression in yeast leads to gene repression of thioredoxin (TRX1/2), a highly conserved multifunctional antioxidative and antiapoptotic protein family. Accordingly, we demonstrated that reactive oxygen species (ROS) are highly produced in p53 yeast induced cell death as shown by dihydrorhodamine 123 staining. These results suggest that the generation of ROS is a key event in p53 yeast induced cell death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-18: Protective Effect of Selenium- Enriched Saccharomyces Cerevisiae Cytoplasm and Cell Wall on Chronic Immobilization Stress-Induced Damages in Testis; Evidence for Apoptosis

Background Previous reports showed that immobilization stress (IMS) results in severe damages at spermatogenesis level. Present study was performed in order to evaluate the protective effect of selenium-enriched yeast fragments on IMS-induced derangements. MaterialsAndMethods For this purpose, 42 mature male Wister rats were assigned into 6 groups (7 rats in each group) including; control, stre...

متن کامل

CLONING AND EXPRESSION OF HUMAN IFNα2B GENE IN SACCHAROMYCES CEREVISIAE

Interferon is a protein secreted by eucaryotic cells following stimulation by viruses, bacteria, and many other immunogenes. Recent medical studies indicate that interferons have effective role in the treatment of virus infections, immunodeficiency and certain types of cancer such as hairy cell leukaemia (HCL). The aim of the present study is to apply yeast strain for secreting human IFNα2b fol...

متن کامل

p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae.

The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In the yeast Saccharomyces cerevisiae, the overexpression of the human p53 leads to growth inhibition and apoptotic cell death on minimal medium. In the present work, we show that p53-expressing cells are more susceptible to cell death after an apoptotic stimulus such as H2O2. The analysis of mutan...

متن کامل

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEMS yeast research

دوره 8 8  شماره 

صفحات  -

تاریخ انتشار 2008